skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chiti, Anirudh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Abstract Dwarf galaxies like Sagittarius (Sgr) provide a unique window into the early stages of galactic chemical evolution, particularly through their metal-poor stars. By studying the chemical abundances of stars in the Sgr core and tidal streams, we can gain insights into the assembly history of this galaxy and its early heavy element nucleosynthesis processes. We efficiently selected extremely metal-poor candidates in the core and streams for high-resolution spectroscopic analysis using metallicity-sensitive photometry from SkyMapper DR2 and Gaia DR3 XP spectra, and proper motions. We present a sample of 37 Sgr stars with detailed chemical abundances, of which we identify 10 extremely metal-poor ([Fe/H] ≤ −3.0) stars, 25 very metal-poor ([Fe/H] ≤ −2.0) stars, and two metal-poor ([Fe/H] ≤ −1.0) stars. This sample increases the number of extremely metal-poor Sgr stars analyzed with high-resolution spectroscopy by a factor of 5. Of these stars, 15 are identified as members of the Sgr tidal stream, while the remaining 22 are associated with the core. We derive abundances for up to 20 elements and identify no statistically significant differences between the element abundance patterns across the core and stream samples. Intriguingly, we identify stars that may have formed in ultrafaint dwarf galaxies that accreted onto Sgr, in addition to patterns of C andr-process elements distinct from the Milky Way halo. Over half of the sample shows a neutron-capture element abundance pattern consistent with the scaled solar purer-process pattern, indicating earlyr-process enrichment in the Sgr progenitor. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Context. Over the past few years, theR-Process Alliance (RPA) has successfully carried out a search for stars that are highly enhanced in elements produced via the rapid neutron-capture (r-) process. In particular, the RPA has identified a number of relatively bright, highlyr-process-enhanced (r-II) stars, suitable for observations with the Hubble Space Telescope (HST), facilitating abundance derivation of elements such as gold (Au) and cadmium (Cd). Aims. This paper presents the detailed abundances derived for the metal-poor ([Fe/H] = −2.55) highlyr-process-enhanced ([Eu/Fe] = +1.29)r-II star 2MASS J05383296–5904280. Methods. One-dimensional local thermodynamic equilibrium (LTE) elemental abundances were derived via equivalent width and spectral synthesis using high-resolution high signal-to-noise near-UV HST/STIS and optical Magellan/MIKE spectra. Results. Abundances were determined for 43 elements, including 26 neutron-capture elements. In particular, abundances of the rarely studied elements Nb, Mo, Cd, Lu, Os, Pt, and Au are derived from the HST spectrum. These results, combined with RPA near-UV observations of two additionalr-II stars, increase the number of Cd abundances derived forr-process-enriched stars from seven to ten and Au abundances from four to seven. A large star-to-star scatter is detected for both of these elements, highlighting the need for more detections enabling further investigations, specifically into possible non-LTE effects. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. Abstract We conducted an in-depth analysis of candidate member stars located in the peripheries of three ultra-faint dwarf (UFD) galaxy satellites of the Milky Way (MW): Boötes I (Boo1), Boötes II (Boo2), and Segue I (Seg1). Studying these peripheral stars has previously been difficult due to contamination from the MW foreground. We usedu-band photometry from the Dark Energy Camera (DECam) to derive metallicities to efficiently select UFD candidate member stars. This approach was validated on Boo1, where we identified both previously known and new candidate member stars beyond five half-light radii. We then applied a similar procedure to Boo2 and Seg1. Our findings hinted at evidence for tidal features in Boo1 and Seg1, with Boo1 having an elongation consistent with its proper motion and Seg1 showing some distant candidate stars, a few of which are along its elongation and proper motion. We find two Boo2 stars at large distances consistent with being candidate member stars. Using a foreground contamination rate derived from the Besançon Galaxy model, we ascribed purity estimates to each candidate member star. We recommend further spectroscopic studies on the newly identified high-purity members. Our technique offers promise for future endeavors to detect candidate member stars at large radii in other systems, leveraging metallicity-sensitive filters with the Legacy Survey of Space and Time and the new, narrowband Ca HK filter on DECam. 
    more » « less
    Free, publicly-accessible full text available December 26, 2025
  6. Abstract Using a grid of empirically calibrated synthetic spectra developed in our previous study, we construct an all-sky 3D extinction map from the large collection of low-resolution XP spectra in Gaia DR3. Along each line of sight, with an area ranging from 0.2 to 13.4 deg2, we determine both the reddening and metallicity of main-sequence stars and model the foreground extinction up to approximately 3 kpc from the Sun. Furthermore, we explore variations in the total-to-selective extinction ratio in our parameter search and identify its mean systematic change across diverse cloud environments in both hemispheres. In regions outside the densest parts of the clouds, our reddening estimates are validated through comparisons with previous reddening maps. However, a notable discrepancy arises in comparison to other independent work based on XP spectra, which can be attributed to systematic offsets in their metallicity estimates. On the other hand, our metallicity scale exhibits reasonable agreement with the high-resolution spectroscopic abundance scale. We also assess the accuracy of the XP spectra by applying our calibrated models, and we confirm an increasing trend of flux overestimation at shorter wavelengths below 400 nm. 
    more » « less
  7. ABSTRACT We report on the discovery of the first ultra-metal-poor (UMP) star 2MASS J20500194−6613298 (J2050−6613; [Fe/H] = −4.05) selected from the Gaia BP/RP spectral catalogue that belongs to the ancient Atari disc component. We obtained a high-resolution spectrum for the star with the MIKE spectrograph on the Magellan-Clay telescope. J2050−6613 displays a typical chemical abundance pattern for UMP stars, including carbon and zinc enhancements. In contrast, J2050−6613 shows extremely high [Sr/Fe] and [Sr/Ba] ratios compared to other stars in the [Fe/H] < −4.0 regime. J2050−6613 is most likely an early Population II star that formed from a gas cloud that was chemically enriched by a massive Population III hypernova (E > 1052 erg). Such a Population III core-collapse hypernova could simultaneously explain the origin of the abundance pattern of light and heavy elements of 2MASS J2050−6613 if a large amount of Sr of ∼10−5 M⊙ was produced, possibly by neutrino-driven (wind) ejecta. Therefore, the abundance pattern of 2MASS J2050−6613 places important constraints on Sr-producing nucleosynthesis sources operating in the Atari progenitor at the earliest times. 
    more » « less
  8. Abstract The Hercules ultrafaint dwarf galaxy (UFD) has long been hypothesized to be tidally disrupting, yet no conclusive evidence has been found for tidal disruption owing partly to difficulties in identifying Hercules member stars. In this work, we present a homogeneous reanalysis of new and existing observations of Hercules, including the detection of a new potential member star located ∼1° (∼1.7 kpc) west of the center of the system. In addition to measuring the line-of-sight velocity gradient, we compare predictions from dynamical models of stream formation to these observations. We report an updated velocity dispersion measurement based on 28 stars, 1.9 0.6 + 0.6 km s−1, which is significantly lower than previous measurements. We find that the line-of-sight velocity gradient is 1.8 1.8 + 1.8 km s−1kpc along the major axis of Hercules, consistent with zero within 1σ. Our dynamical models of stream formation, on the other hand, can reproduce the morphology of the Hercules UFD, specifically the misalignment between the elongation and the orbital motion direction. Additionally, these dynamical models indicate that any radial velocity gradient from tidal disruption would be too small, 0.00 0.91 + 0.97 km s−1kpc, to be detectable with current sample sizes. Combined with our analysis of the tidal radius evolution of the system as a function of its orbital phase, we argue that it is likely that Hercules is indeed currently undergoing tidal disruption in its extended stellar halo with a line-of-sight velocity gradient too small to be detected with current observational data sets. 
    more » « less
  9. ABSTRACT We present the first detailed chemical-abundance analysis of stars from the dwarf-galaxy stellar stream Wukong/LMS-1 covering a wide metallicity range ($$-3.5 \lt \rm [Fe/H] \lesssim -1.3$$). We find abundance patterns that are effectively indistinguishable from the bulk of Indus and Jhelum, a pair of smaller stellar streams proposed to be dynamically associated with Wukong/LMS-1. We confirmed a carbon-enhanced metal-poor star ($$\rm [C/Fe] \gt +0.7$$ and $$\rm [Fe/H] \sim -2.9$$) in Wukong/LMS-1 with strong enhancements in Sr, Y, and Zr, which is peculiar given its solar-level [Ba/Fe]. Wukong/LMS-1 stars have high abundances of α elements up to $$\rm [Fe/H] \gtrsim -2$$, which is expected for relatively massive dwarfs. Towards the high-metallicity end, Wukong/LMS-1 becomes α-poor, revealing that it probably experienced fairly standard chemical evolution. We identified a pair of N- and Na-rich stars in Wukong/LMS-1, reminiscent of multiple stellar populations in globular clusters. This indicates that this dwarf galaxy contained at least one globular cluster that was completely disrupted in addition to two intact ones previously known to be associated with Wukong/LMS-1, which is possibly connected to similar evidence found in Indus. From these ≥3 globular clusters, we estimate the total mass of Wukong/LMS-1 to be $${\approx }10^{10} \, \mathrm{M}_\odot$$, representing ∼1 per cent of the present-day Milky Way. Finally, the [Eu/Mg] ratio in Wukong/LMS-1 continuously increases with metallicity, making this the first example of a dwarf galaxy where the production of r-process elements is clearly dominated by delayed sources, presumably neutron-star mergers. 
    more » « less